
The Evolving Threat of Internet Worms

Jose Nazario, Arbor Networks <jose@arbor.net>

Why Worm Based Intrusions

Relative ease
— “Write once, run everywhere” promise can come true

Penetration
— Right past firewalls via laptops, find the weakest link

Persistence
— Worms keep working so you don’t have to

Coverage
— Attack everything eventually

Why Worms are Successful

 Missing patches
 Rogue access
 Missing access control

Evolution of Worm Threats

Previously, worms were simple clones

Worms have become more complicated systems
— Multi-vector

• Grow your potential target base

— DDoS tool propagation
• Utilize the army of machines

— Dynamic
• Thwart static detection mechanisms

— Counterworms
• Fight back with the same strategy

Multi-vector Worms

Goal is to thwart simple defenses and infect more machines

Code Red vs. Nimda (2001)
— Code Red: one attack vector (IIS)

— Nimda: multiple attack vectors (IIS, mail, IE, open shares)

Sircam (2001)
— Mass mailer, also spread via open shares

Blaster (2003)
— MS-RPC or WebDAV attacks

DDoS Tool Propagation

Use the worm to attack an adversary

Code Red (2001)
— SYN flood against a static IP

Blaster (2003)
— SYN flood against a static domain

— Variants carried a DDoS toolkit

Sapphire, Welchia (2003)
— The worm’s spread is a DDoS

Dynamic Worm Appearances

Try and develop a worm with longevity by evading defenses

Hybris (2000)
— Used alt.comp.virus to spread code updates

Lirva (2003)
— Attempted to download new packages from website

Sobig (2003)
— Contacted website for next set of instructions

Counterworms

Fight the worm with a fast, scalable attack

Code Green (2001)
— Anti-Code Red worm

Cheese (2001)
— Anti-L1on worm

Welchia (2003)
— Anti-Blaster worm

Cause more traffic and problems than they attempt to solve

Worm Authors Are Learning

It’s growing easier to build worms
— Recycle an exploit, automation code, build, launch

Use flexible targeting for DoS attacks

No need to target multiple platforms
— One platform works well enough

Multiple infection vectors lead to longevity
— Nimda still present two years later

Local bias effective at enterprise penetration
— Worms will be carried into the enterprise

— Laptops, VPN connections

Vectors of Control

Current Visibility Control

Classic firewall strategy for the Internet
— Minimally protect the DMZ

— Maximally protect the internal network

DMZ for exposed services
— Control data flow between trusted, untrusted networks

Hardened wall against internal, external networks

Classic Vulnerability Control

Minimized setups on system rollouts
— Construct an image with minimal software

Patch maintenance
— Worms typically attack known holes

Aggressive known vulnerability inventorying
— Regular system inventories, comparisons against vulnerability

databases (e.g. CVE)

Controlling Infectability

Hardened systems
— OS level changes

• Non-executable stack

• Permissions for any subsystem

Hardened applications
— Application configurations

Strengthened configurations
— Services and privileges for any system

Going Beyond the Firewall

Traditional firewall configuration methods
— Decide policy, install filters

— Adjust by reading logs, tweak as needed

— Broken applications or upset users

Informed firewall configurations
— Measure traffic, infer usage

— Determine policy, install policy

Assisted by Peakflow X

Intelligent Risk Assessment

Traditional vulnerability scanners
— Scan for a service, list machines offering that service

— Banner grab, report service type, report potential
vulnerabilities

Usage, policy-aware vulnerability scanners
— Scan for services, compare against usage and policy, report

differences

— Performed by Peakflow X

Combating Worms

Minimize visibility
— Tune access filters to a minimal set

— Externally reachable

— Internally used

Minimize vulnerability
— Track used services

— Identify, remove unused services

— Couple to strong patch management

Detecting Worms

Challenge
— In the face of dynamic behaviors, reliably detect the

presence of a worm

Solution
— Every worm attempts to spread from host to host

— Specific forms of traffic will increase

— Not every host will have sent this traffic before

• Example: web server becoming a web client

Therefore
— Detect the cascading change in host behaviors

Data Gathering for Worm Detection

Blackhole networks
— No background traffic

— Collect attempts from worm trying random hosts

Live enterprise networks
— Traffic and relationship modeling

Live backbone networks
— Interface and topology statistics

— Traffic modeling and analysis

Principles of Correlation Analysis

Two types of correlations to qualify events
— Auto-correlation

• Frequency and sources for any single type of anomaly

• Example: scan frequencies

— Cross-correlation

• Frequency and sources of related anomalies

• Example: scans followed by traffic increases

During worm outbreaks, these frequencies will increase from
a growing number of hosts

Worm Detection by Peakflow X

Uses correlation analysis
— Partially based on an expert system

— Extendable by the user via a filter language

Produces a detailed report
— Pattern of the worm’s behavior

— Hosts matching this pattern

• Dynamically grows

— Amount of traffic caused by the worm

Couple to flow log for additional forensics

Safe Quarantine Interactions

 Control plane interactions
 Specific filters
 Preserve legitimate service

Conclusions

Worm authors are getting smarter
— Worms are getting easier to write, more effective

Worm detection mechanisms are getting more sophisticated
and robust

IDS and firewall mechanisms are advancing to develop worm
defense techniques

