
Signed Archives: An evaluation of Internet trust

Jose Nazario
jose@monkey.org

Copyright c© 2002 Jose Nazario, all rights reserved.

April 14, 2003

1 Abstract

In 2002, a series of high profile compromises of In-
ternet software servers resulted in the alteration of
software archives. This prompted an evaluation of
the state of trust of the signed software distribution
system. Over 2800 archives representing over 1400
unique software packages were downloaded and their
corresponding signatures evaluated for validity. These
software packages were pulled from over 260 different
sites and the keys retrieved only during the verifica-
tion stage. Of the over 2800 archives checked, only
5 errors were found, three of which were found to be
false negatives. Additionally, the characteristics of the
keys used to sign these archives along with the key dis-
tribution systems were studied. These findings high-
light weaknesses in the signed archive distribution sys-
tem and demonstrate clear vulnerabilities facing sev-
eral projects.

2 Introduction

In mid 2002, a series of compromises of high profile
software distribution sites occured. This list includes
the breakin and modification of the popular IRC client
’irssi’ [1], the dsniff, fragroute, and fragrouter source
code from Dug Song [2], and the OpenSSH source
code [3]. In each case the modifications were detected
via cryptographic checksums, but could have been de-
tected with public key signatures for the packages, as
well.

The use of public key signatures for software
archives is popular, typically using the PGP standard.
The model used in PGP (and tools using this stan-
dard, including GnuPG and openPGP) use the ’web
of trust’ model (see [4]). In this scenario, the author
or team of authors generate a public and private key
pair and sign the software using their private key. The
public key is distributed and often signed by others as

to its veracity and trustworthiness. When the software
is downloaded, the public key is used to validate the
source of the software and the match between the sig-
nature and the archive. This public key has increased
trust based upon the number and nature of the sig-
natures it has. More signatures obviously help raise
the ease of verification of the key, and more signatures
that are from well known keys raises this metric even
further.

The modification of these popular software packages
raises the question of how many other software pack-
ages are compromised but have remained unreported.
Additional questions raised include the integrity of the
underlying public key system, including the strength
of the keys, the trustworthiness of them through signa-
tures on the keys, and the key distribution mechanisms
typically found.

In order to obtain the answers to these questions,
a diverse set of signed software packages were identi-
fied and downloaded along with their signatures. The
archives were then verified using the indicated keys
and the result was recorded. While only a handful of
negative results were found, weaknesses in the system
overall were identified and bulk public key statistics
were measured. Based upon this evidence, the pub-
lic key signature system as it is used contains minor
weaknesses and is susceptible to manipulation by an
attacker.

3 Survey Results

In mid august, 2002, a total of 2804 signed software
archives were identified via a google search (see Meth-
ods). This number represented 1426 unique archives,
with the difference being due to software mirrors of
some packages. These archives were located on 166
unique servers throughout the world. The software was
downloaded using a cable modem and took approxi-
mately 2.5 days, with the archive and their signatures

1



using approximately 9.5 GB of disk space. During the
bulk processing 2799 downloaded archives were a pos-
itive verification.

Five failures were found in the course of this batch
verification. Of those, one was due to a truncated
download (identified by comparing the archive against
the same archive from different sites) and two were false
negatives revealed by repeating the verification process.
The remaining two failures were legitimate mismatches
between the signature and the archive, which were in
subsequent releases of the same software package. The
author was contacted and this result was confirmed.

During the course of this study some archives were
unable to verify from the cmu-snmp archives. These
are found at ftp://ftp.andrew.cmu.edu/pub/snmp/.
Attempts to verify the signature using the downloaded
archive produce the error:

gpg: Warning: using insecure memory!
gpg: please see http://www.gnupg.org/faq.html for more information
gpg: Signature made Mon Mar 31 18:18:58 1997 EST using RSA key ID 65965CD1
gpg: Can’t check signature: public key not found

An attempt was made to fetch this key from the various
keyservers, all of which yielded errors:

$ gpg --keyserver PGP.mit.edu --recv-key 65965CD1
gpg: Warning: using insecure memory!
gpg: please see http://www.gnupg.org/faq.html for more information
gpg: requesting key 65965CD1 from HKP keyserver PGP.mit.edu
gpg: key 65965CD1: no valid user IDs
gpg: this may be caused by a missing self-signature
gpg: Total number processed: 1
gpg: w/o user IDs: 1

This leaves the key unimported into the local key ring,
causing the first error shown above. Examination of
several archives and websites were unable to produce
a key. All other archives were able to be processed by
the bulk verification tools used in this study.

4 Uncovered Weaknesses

While at first it may appear that the trust in the sys-
tem of signed archives on the internet is well placed,
several common practices were revealed during this
study. These observed behaviors can be combined to
weaken the trust which can be placed in the signed
archive. These practices include the placement of the
public key, the vulnerability of the key to compromise,
and a low number of signatures on an average public
key. Each of these concerns is discussed below using
data gathered from the public keys used in this study.

4.1 Inline Key Distribution

Dhe location for the distribution of the public keys
associated with a signed archive is an important con-
sideration. As described above for the cmu-snmp

archives, public keys must be readily identifiable and
downloaded in order to verify the signature. This con-
cern was described by Alex Brennen in the ‘Strong Dis-
tribution HOWTO’ [5] in section 2.2:

There are three steps that I recommend that
you take in order to circulate your public key.
First, you should post your public key on
the website where the software is distributed
from. You should place the ASCII armored
public key is a conspicuous place where peo-
ple can easily find and download it.

Care must be taken, however, to protect the integrity
of the key. This is somewhat addressed in the ‘Strong
Distribution HOWTO’ when the author states later in
that same section,

I do not recommend that you include your
public key inside your software archive. While
there is no technical security problems with
this, it does encourage the end user to ac-
cept the public key driven by trust based in
the location of the key rather than integrity
imparted upon the key by signatures. En-
couraging such habits in the end users will
make them more susceptible to trojan horse
attacks against the Strong Distribution Model
in which fake archives and fake keys are dis-
tributed.

While Brennen cautions against inclusion of the key
within the archive, distributing the key inline with the
archive by placing it on the same server and often in
the same directory is a similar action. A compromised
server can not only have its software archives modified
by an attacker but the keys forged, as well, leading
to a match between the signature, key, and archive.
Instead, the distribution site for the keys should be an
additional factor into their trust. A key server which
protects the keys protects the signatures, by extension.

Several popular software packages which are signed
use inline key distribution, in addition to a key server,
to make their public keys available. These products
include:

• OpenSSH portable, which includes
a copy of the maintainer’s key as
OpenSSH/portable/DJM-GPG-KEY.asc

• SSH Communications’ SSH source code
packages, which distribute several keys
alongside their source code packages as
pub/ssh/SSH-DISTRIBUTION-KEY.asc,
pub/ssh/SSH1-DISTRIBUTION-KEY-RSA.asc,
pub/ssh/SSH2-DISTRIBUTION-KEY-DSA.asc, and
pub/ssh/SSH2-DISTRIBUTION-KEY-RSA.asc.



Figure 1: Distribution of key ages.
The keys used in this study were examined to find their
creation year. This date was then graphed as a function
of the frequency of the date of key creation. Most keys
are no more than 3 years old, with some keys almost
10 years old.

• the Cyrus mail tools packages, which distributes
the keys used to sign their software in a file KEYS

• the Gnuplot project, which distributes the keys it
signs the archives with in a similar fashion, using
the file PGPKEYS

In each case an attacker can trivially circumvent the
protection offered by using public key signatures by
inserting their own key into this location. Due to its
location, users will download this key and trust it and
verify the signature using this key.

4.2 Key Compromise

One additional consideration in the evaluation of the
trust of the signatures on software archives is the age of
the keys. Older keys are typically of a smaller bit size
and thus weaker than their newer counterparts. This
is due mainly to the limitations of the software at the
time of the key’s creation. As shown in Figure 1, most
keys are no more than 3 years old, but a significant
number of the keys used to sign the archives examined
in this study are 5 or more years old. Key age and size
are related to their likelihood of their compromise by
factorization by a determined adversary.

Similarily, when the sizes of the keys are examined,
a strong trend towards the default settings is immedi-
ately appearant. Later versions of PGP and the gpg
tool use 1024 bits as the default key size. The observed
key lengths in bits are plotted in figure 2. When look-
ing at recommendations by both schneier and rivest,
1024 is on the short end at the current time (2002) for
security against even a modestly funded foe [6].

Figure 2: Size distribution of keys in use.
The sizes of the public keys used to sign the archives
studied in this research are shown above. Of the 93
keys examined here, 79 have a size of 1024 bits. This
graph does not differentiate between DSA keys (57 in
this study) and RSA keys (36 in this study).

Because earlier versions of PGP had limitations on
the sizes of keys they could generate, the year of key
creation was examined in relation to the size of the key.
As shown in figure 3, no strong correlation between
the date of key generation and size in bits exists. In
general, larger keys are found in the more recent years.
Note that in every year found, 1024 bit keys are also
in use.

The size of keys is a factor in the security of the key,
and thus the signed archive. Recent advances in factor-
ing of public keys [7] have caused some to abandon the
reccomendations made by Schneier, Rivest, and oth-
ers [6] in favor of larger keys [8].

Obviously the nature of the adversary must be taken
into account. Software which is of interest to govern-
ments or large corporations to alter are under more
serious threats than software which only interests indi-
viduals. Software of the former include cryptography
products like IPsec and SSH implementations; the lat-
ter includes tools like Gnuplot and SMNP. It is safe to
assume that factoring keys above 512 bits is still of in-
terest only to dedicated researchers, large corporations,
and governments.

4.3 Few Signatures in Use

By far the biggest issue uncovered was a large num-
ber of keys used to sign archives which were self signed
or contain a low number of signatures by other par-
ties. From the analyzed archives a total number of 93
unique keys were retrieved which contained 1971 signa-
tures. This yields an average of 21 signatures per key.
The number of signatures per key is plotted in figure



Figure 3: Correlating key age and size in bits.
The ages of the keys studied here were plotted against
their sizes in bits. While a general trend of larger keys
as the age decreases is observed, it is only a general
trend. It is also interesting to observe that 1024 bit
keys are present at every sample period. It is important
to note that these keys are all in active use at this time.

4.
At the maximum a number of 260 signatures were

found on two keys used in this study, from Joost van
Baal and Eduard Bloch, each involved in the Debian
Linux project and avid initiators of key signing events.
At the minimum, five keys were found to have only one
signature. This signature was from the self signing of
the key, which adds no security to the key. A total of 25
keys were found to be in use with 3 or fewer signatures
on each key.

Notable keys which are in active use with 3 or
fewer signatures include the official Scyld computing
key (scyld.com), the Procmail distribution key, each
with 3 signatures on each key (2 when the self sig-
nature is discounted), the FreeS/WAN 1.97 snapshot
key, which has 2 signatures, and the XEmacs distri-
bution key, which has only one signature from itself.
In each case this limited number of signatures reduces
the amount of trust in the archive due to the possibility
of an introduction of a forged key. In the absence of
trustworthy signatures, the veracity of the key cannot
be understood.

4.4 Trust of the Signatures

It is important to note that while it is easy to obtain
a large number of signatures for a public key, it is im-
portant that these keys be trustworthy and verifiable,
as well. Of the 1971 signatures found in the keys used
in this study, 1662 had unknown user ids. Subtracting
the self signatures (93, one for each public key used in

Figure 4: Signatures per key.
Using the keys downloaded to verify the software
archives studied in this research, the number of sig-
natures per key was measured and the resulting fre-
quency plotted. Each key has at least one signature
(from itself), with most keys having 4 signatures. Only
a handful of keys have more than 12 signatures. note
that this does not indicate the strength of the signa-
tures, measured by their connectedness.

this research), this leaves 216 keys which had estab-
lished user ids based soley on other archive signatures.
While a key may have many signatures, they only add
value when they are from known and trusted parties.

To examin the weight these signatures have, each of
the keys used to sign the archives used in this study
were mapped back to the largest “strong set” [9]. The
strong set is a large set of approximately 53,000 keys
which are referenced to eachother via signatures. The
center of the set is considered to be the key with the
minimum average distance between itself and any other
key.

The 93 keys used in this study were analyzed using
the strong set key analysis performed by Jason Harris
on December 1, 2002 [10]. Of the 93 keys measured, 36
were unable to be mapped back into the strong set. Of
the remaining 57 keys measured, an average distance
between that key and any other key is slightly over
6 hops, with an average minimum of 4.2 hops and a
maximum of 10.7 hops.

From this analysis we can deduce a metric of con-
fidence in the key’s validity. Keys which can be tied
into the large strong set are connected to other keys in
that set and are more likely to be valid keys. Isolated
keys and sets occur when a narrow bridge between any
cluster and the larger set is broken, such as through a
revocation. The linkage to the large strong set, how-
ever, gives confidence that the key is indeed a correct
key.



4.5 Expired Keys

An additional question which can be investigated
from this sampling of software distributions is the
prevalence of archives signed with expired keys. PGP
has a method of granting a key a fixed lifetime, after
which the key is invalid. This is typically used to pre-
vent attacks from keys which have been broken during
their lifetime.

The summary of statistics for this data set with re-
gards to key expirations are as follows. Of the 93 keys
obtained for this study, 16 had expiration date. Of
those 16, 3 had expired by the time of their use in this
study in August, 2002. When examined in light of the
key ages, the difference between 16 keys and 93 keys is
understandable, given that PGP 2.6.x users were un-
able to set key expiration dates. However, newer keys
used for signing made with newer software frequently
lack expieration dates.

The concept of an expiration date is a double edged
sword. It helps in defeating attacks which break the
key’s encryption provided the expiration time is before
the anticipated compromise could occur. On the other
hand, it forces the generation and distribution, as well
as an updating, of the signature material.

Expired keys are difficult to detect without examin-
ing for them explicitely. Early versions of the GnuPG
tool often confused users with the results of expired
keys, including attempts to use them and the nature
of the error message generated. Furthermore, many
versions of PGP implementations, including GnuPG
and commercial PGP, differ in how they handle ex-
pired or altered keys. These interopability problems
only worsen the dillema of properly handling keys.

An issue related to expired keys is revoked keys.
Key revocations can be generated and uploaded to
key servers. In the absence of frequent verification
of keys against authoritative key servers, revoked keys
may still be in widespread use. This is very similar
to the problems faced by X.509 hierarchies with CRL
(certificate revokation list) distribution. An update of
the keyring in January, 2003, using the recently added
GnuPG feature to automatically refresh the keyring
showed only one key listed had been revoked.

5 Related Work

This research is not the first foray into studying
the application of public key cryptography in the real
world. A 1996 study into the trust model as it is im-
plemented in PGP reveals that the weakest component
of the PGP trust model is the trust assigned by a per-

son to any key [11]. An additional study examined
the security of the private key from the strength of the
passphrase in use. While the study did not accumulate
a large pool of passphases, the data it did accumulate
enough data to note that passphrase security is a threat
to the security of the system [12].

Ongoing research into the strength of the web of
trust model used by the PGP protocol has been in-
strumental in illustrating the integrity of the system.
This work, developed by Drew Streib and continued by
Jason Harris, is an integral part of verifying the verac-
ity of a key used by an archive [9, 10]. A related effort
was undertaken with the Global Internet Trust Regis-
ter [13]. Published in 1999, the Register is a printed
list of PGP keys, allowing for an out-of-band review
of key material. This is crucial in establishing the au-
thenticity of a key.

Lastly, an examination of an attack tree against the
PGP model shows that theft of the private key by other
means (such as compromise of a workstation) is a more
substantial threat than factoring the public keys [14].

6 Conclusions

This paper has examined the verification of over
2800 signed archives downloaded from various world-
wide sites on the internet. While only 2 failures to
properly verify were found, several other threats to the
security of the signed distribution model were found
and discussed. These weaknesses include a lack of
trustworthy signatures on the keys, old or low strength
keys, and poor distribution methods of the public key.
While the system as a whole is not failing, key points
where improvements can be made have been identified.
Possible additional work includes an ongoing project
to verify archives found on the internet using similar
methods employed here, and key signing facilitation,
especially to trusted PGP users.

7 Methods

To find signed archives to download and evaluate,
the google search engine was used with the search terms
‘tar.gz.sig’ and ‘tgz.sig’. These search terms were cho-
sen as they are popular signature file extensions. This
search yielded 261 sites and 400 unique sites and subdi-
rectories to check, representing 2804 archives to down-
load along with 2804 signatures. Due to duplicates
and mirrors, this list represented 1426 unique archives
to download and evaluate. The ‘wget’ utility was used
to download the directories, which included the archive



and the signature file, to a local machine for evaluation.
A small tool was written which used the GnuPG

tool, version 1.0.7, running on OpenBSD to verify the
signatures. The directory tree was walked and the
archives and signatures were compared, with the ac-
tions logged. If the key did not exist in the local public
keyring, it was fetched from PGP.mit.edu and the ver-
ification process was repeated. This key server was
chosen as it is a well established key server which con-
tains most of the keys used in this study. Failures were
examined manually.

Keys were examined after the verification process to
gather statistics on the stated key size, key creation
date, and number of signatures on each key. No at-
tempt was made to verify the veracity of the stated
key signatures on any key, and no trust web analysis
was performed.

Graphs were generated using Gnuplot.
The complete list of sites and archives analyzed

in this study, as well as the tools used to process
the data, are all available in a separate document at
http://monkey.org/ jose/signed-archives/data/.

8 Addendum

During the preparation of this paper, it was found
that the distribution files for Sendmail were modified
in a fashion similar to the files of openssh. More in-
formation is available from the CERT advisory on the
subject [15]. Additionally, a modified distribution of
the tools tcpdump and the pcap library were also found
in November, 2002 [16].

9 Acknowledgements

The author would like to extend his gracious thanks
to Rick Wash, Marius Eriksen, and Niels Provos, all
of the University of Michigan, along with Jason Peel,
Florian Kohl, Jeff Godin, and V. Alex Brennen for their
insightful comments and advice during this study and
the preparation of this report. The PGP key databases
maintained by Jonathan McDowell, Drew Streib, and
Jason Harris were useful in the analysis of the retrieved
keys.

References

[1] irssi.org cracked -¿ irssi’s configure backdoored
for past two month. 2002. Available online at
http://www.irssi.org/?page=news.

[2] Dug Song. Re: Trojan/backdoor
in fragroute 1.2 source distribution.
2002. Available on the Internet at
http://lwn.net/Articles/1479/?format=printable.

[3] Niels Provos. OpenSSH Security Advisory
(adv.trojan). 2002. Available online at
http://www.openssh.com/txt/trojan.adv.

[4] Patrick Feisthammel. Explanation of the web
of trust of PGP. 2002. Available from
http://www.rubin.ch/pgp/weboftrust.en.html.

[5] V. Alex Brennen. Strong Distribu-
tion HOWTO. 2002. Maintained at
http://www.cryptnet.net/fdp/crypto/strong distro.html.

[6] Bruce Schneier. Applied Cryptography, Second
Edition. John Wiley and Sons, New York, USA,
1995.

[7] D. J. Bernstein. Circuits for integer factorization:
a proposal. 2002. This proposal is archived on
http://cr.yp.to/papers/nfscircuit.ps.

[8] Lucky Green. 1024-bit RSA keys in
danger of compromise. 2002. This
mailing list message is archived at
http://tin.le.org/vault/security/encryption/rsa1024.html.

[9] Drew Streib. keyanalyze - Analysis of a
large OpenPGP ring. 2002. The keyana-
lyze data and tools are available at the website
http://dtype.org/keyanalyze/.

[10] Jason Harris. keyanalyze - Analysis of a
large OpenPGP ring. 2002. The continu-
ation of the keyanalyze data is available at
http://keyserver.kjsl.com/ jharris/ka/ on a bi-
weekly basis.

[11] Alfarez Abdul-Rahman. An Analysis of PGP’s
Trust Model. 1996. Available online at
http://www.cs.ucl.ac.uk/staff/F.AbdulRahman/docs/pgptrust.html.

[12] Arnold G. Reinhold. Results of a Survey on PGP
Pass Phrase Usage. 1995. This classic paper
is archived online at http://world.std.com/ rein-
hold/passphrase.survey.asc.

[13] Ross J. Anderson (Editor), Bruno Crispo, Jong-
Hyeon Lee, vacla Matyas, and Fabien A. P. Petit-
colas. The Global Internet Trust Register. MIT
Press, Boston, MA, 1999.

[14] Bruce Schneier. Attack Trees. Doc-
tor Dobb’s Journal, 1999. Archived at
http://www.counterpane.com/attacktrees-ddj-
ft.html.



[15] Chad Dougherty and Marty Lindner. CERT Ad-
visory CA-2002-28 Trojan Horse Sendmail Dis-
tribution. 2002. This advisory is available on-
line at http://www.cert.org/advisories/CA-2002-
28.html.

[16] Roman Danyliw and Chad Dougherty. CERT
Advisory CA-2002-30 Trojan Horse tcp-
dump and libpcap Distributions. 2002.
The advisory and incident note is available
at http://www.cert.org/advisories/CA-2002-
30.html.


